Holographic patterning of fluorescent microstructures comprising silver nanoclusters

نویسندگان

  • Puskal Kunwar
  • Léo Turquet
  • Jukka Hassinen
  • Robin H. A. Ras
  • Juha Toivonen
  • Godofredo Bautista
چکیده

Metal nanoclusters, which exhibit extraordinary physical and chemical properties that are different from their bulk counterparts, are highly promising nanomaterials for photonics. Recently, the use of twophoton excitation to fabricate silver nanoclusters in polymers was reported but still lacks speed and flexibility which are imperative for applications such as labeling and spectroscopy. Here, we demonstrate the fabrication of fluorescent nanocluster microstructures using spatially phase-shaped laser beams. Using an incident power of 60 mW and exposure time of 8 s, we found that the smallest line-width of the fluorescent microstructures is 478 nm, which is comparable to the line-width achieved with a two-photon laser scanning approach. As a proof-of-principle demonstration, the technique is used to fabricate fluorescent micro-labels that could be used in anticounterfeiting applications. ©2016 Optical Society of America OCIS codes: (090.0090) Holography; (300.0300) Spectroscopy; (310.0310) Thin films; (220.0220) Optical design and fabrication; (210.0210) Optical data storage; (160.0160) Materials; (250.5230) Photoluminescence; (160.2540) Fluorescent and luminescent materials. References and links 1. I. Díez and R. H. A. Ras, “Fluorescent silver nanoclusters,” Nanoscale 3(5), 1963–1970 (2011). 2. J. Zheng, P. R. Nicovich, and R. M. Dickson, “Highly Fluorescent Noble-Metal Quantum Dots,” Annu. Rev. Phys. Chem. 58(1), 409–431 (2007). 3. X. L. Guével, C. Spies, N. Daum, G. Jung, and M. Schneider, “Highly fluorescent silver nanoclusters stabilized by glutathione: a promising fluorescent label for bioimaging,” Nano Res. 5(6), 379–387 (2012). 4. H. Xu and K. S. Suslick, “Water-Soluble Fluorescent Silver Nanoclusters,” Adv. Mater. 22(10), 1078–1082 (2010). 5. H. Xu and K. S. Suslick, “Sonochemical Synthesis of Highly Fluorescent Ag Nanoclusters,” ACS Nano 4(6), 3209–3214 (2010). 6. I. Díez, M. Pusa, S. Kulmala, H. Jiang, A. Walther, A. S. Goldmann, A. H. E. Müller, O. Ikkala, and R. H. A. Ras, “Color Tunability and Electrochemiluminescence of Silver Nanoclusters,” Angew. Chem. Int. Ed. Engl. 48(12), 2122–2125 (2009). 7. M. Bellec, A. Royon, K. Bourhis, J. Choi, B. Bousquet, M. Treguer, T. Cardinal, J.-J. Videau, M. Richardson, and L. Canioni, “3D Patterning at the Nanoscale of Fluorescent Emitters in Glass,” J. Phys. Chem. C 114(37), 15584–15588 (2010). 8. A. Royon, K. Bourhis, M. Bellec, G. Papon, B. Bousquet, Y. Deshayes, T. Cardinal, and L. Canioni, “Silver Clusters Embedded in Glass as a Perennial High Capacity Optical Recording Medium,” Adv. Mater. 22(46), 5282–5286 (2010). 9. G. De Cremer, B. F. Sels, J. Hotta, M. B. Roeffaers, E. Bartholomeeusen, E. Coutiño-Gonzalez, V. Valtchev, D. E. De Vos, T. Vosch, and J. Hofkens, “Optical Encoding of Silver Zeolite Microcarriers,” Adv. Mater. 22(9), 957–960 (2010). 10. P. Kunwar, J. Hassinen, G. Bautista, R. H. A. Ras, and J. Toivonen, “Direct Laser Writing of Photostable Fluorescent Silver Nanoclusters in Polymer Films,” ACS Nano 8(11), 11165–11171 (2014). 11. P. Kunwar, J. Hassinen, G. Bautista, R. H. A. Ras, and J. Toivonen, “Sub-micron scale patterning of fluorescent silver nanoclusters using low-power laser” (submitted). 12. M. Farsari and B. N. Chichkov, “Materials processing: Two-Photon Fabrication,” Nat. Photonics 3(8), 450–452 (2009). 13. S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer Features for Functional Microdevices,” Nature 412(6848), 697–698 (2001). #257748 Received 19 Jan 2016; revised 17 Feb 2016; accepted 22 Feb 2016; published 26 Feb 2016 © 2016 OSA 1 Mar 2016 | Vol. 6, No. 3 | DOI:10.1364/OME.6.000946 | OPTICAL MATERIALS EXPRESS 946 14. H.-B. Sun and S. Kawata, “Two-Photon Photopolymerization and 3D Lithographic Microfabrication,” Adv. Polym. Sci. 170, 169–273 (2004). 15. Y.-L. Zhang, Q.-D. Chena, H. Xia, and H.-B. Sun, “Designable 3D Nanofabrication by Femtosecond Laser Direct Writing,” Nano Today 5(5), 435–448 (2010). 16. M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett. 97(22), 221102 (2010). 17. G. Bautista, M. J. Romero, G. Tapang, and V. R. Daria, “Parallel two-photon photopolymerization of microgear patterns,” Opt. Commun. 282(18), 3746–3750 (2009). 18. J. Tan, M. Shan, C. Zhao, and J. Liu, “Design and fabrication of diffractive microlens arrays with continuous relief for parallel laser direct writing,” Appl. Opt. 47(10), 1430–1433 (2008). 19. B. Bhuian, R. J. Winfield, S. O’Brien, and G. M. Crean, “Pattern generation using axicon lens beam shaping in two-photon polymerisation,” Appl. Surf. Sci. 254(4), 841–844 (2007). 20. C. Sun, N. Fang, D. M. Wu, and X. Zhang, “Projection micro-stereolithography using digital micro-mirror dynamic mask,” Sens. Actuators A Phys. 121(1), 113–120 (2005). 21. K.-S. Lee, D.-Y. Yang, S. H. Park, and R. H. Kim, “Recent developments in the use of two-photon polymerization in precise 2D and 3D microfabrications,” Polym. Adv. Technol. 17(2), 72–82 (2006). 22. J.-I. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett. 86(4), 044102 (2005). 23. H. Takahashi, S. Hasegawa, A. Takita, and Y. Hayasaki, “Sparse-exposure technique in holographic two-photon polymerization,” Opt. Express 16(21), 16592–16599 (2008). 24. H. Melville, G. F. Milne, G. C. Spalding, W. Sibbett, K. Dholakia, and D. McGloin, “Optical trapping of threedimensional structures using dynamic holograms,” Opt. Express 11(26), 3562–3567 (2003). 25. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000). 26. V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators,” Front. Neural Circuits 2, 5 (2008). 27. S. D. Gittard, A. Nguyen, K. Obata, A. Koroleva, R. J. Narayan, and B. N. Chichkov, “Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator,” Biomed. Opt. Express 2(11), 3167–3178 (2011). 28. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972). 29. L. Shang and S. Dong, “Facile preparation of water-soluble fluorescent silver nanoclusters using a polyelectrolyte template,” Chem. Commun. 9, 1088–1090 (2008). 30. C. Zhang, Y. Hu, J. Li, Z. Lao, J. Ni, J. Chu, W. Huang, and D. Wu, “An improved multi-exposure approach for high quality holographic femtosecond laser patterning,” Appl. Phys. Lett. 105(22), 221104 (2014). 31. S. Hasegawa and Y. Hayasaki, “Adaptive optimization of a hologram in holographic femtosecond laser processing system,” Opt. Lett. 34(1), 22–24 (2009).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Micropatterning of silver nanoclusters embedded in polyvinyl alcohol films.

Direct laser writing has been utilized to fabricate highly photostable fluorescent nanocluster microstructures in an organic polymer poly(methacrylic acid), where the carboxyl functional group is reported to play a vital role in nanocluster stabilization. In this Letter, we demonstrate that not only the polymer containing the carboxyl functional group, but also the polymer comprising the hydrox...

متن کامل

Sub-micron scale patterning of fluorescent silver nanoclusters using low-power laser

Noble metal nanoclusters are ultrasmall nanomaterials with tunable properties and huge application potential; however, retaining their enhanced functionality is difficult as they readily lose their properties without stabilization. Here, we demonstrate a facile synthesis of highly photostable silver nanoclusters in a polymer thin film using visible light photoreduction. Furthermore, the differe...

متن کامل

Direct laser writing of photostable fluorescent silver nanoclusters in polymer films.

Metal nanoclusters consist of a few to a few hundred atoms and exhibit attractive molecular properties such as ultrasmall size, discrete energy levels, and strong fluorescence. Although patterning of these clusters down to the micro- or nanoscale could lead to applications such as high-density data storage, it has been reported only for inorganic matrices. Here we present submicron-scale mask-f...

متن کامل

Water-soluble fluorescent silver nanoclusters.

Ag nanoclusters consist of several to roughly a hundred atoms and possess sizes comparable to the Fermi wavelength of electrons; they exhibit molecule-like properties, including discrete electronic transitions and strong fluorescence. These nanoclusters are of significant interest because they provide the bridge between atomic and nanoparticle behavior in noble metals. Since the first observati...

متن کامل

Target-controlled formation of silver nanoclusters in abasic site-incorporated duplex DNA for label-free fluorescence detection of theophylline.

A novel, label-free, fluorescence based sensor for theophylline has been developed. In the new sensor system, an abasic site-incorporated duplex DNA probe serves as both a pocket for recognition of theophylline and a template for the preparation of fluorescent silver nanoclusters. The strategy relies on theophylline-controlled formation of fluorescent silver nanoclusters from abasic site-incorp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016